martes, 27 de junio de 2017

Reversing a common liver disease | National Institutes of Health (NIH)

Reversing a common liver disease | National Institutes of Health (NIH)

National Institutes of Health (NIH) - Turning Discovery into Health

Reversing a common liver disease

At a Glance

  • Eliminating old or damaged cells that have stopped dividing reduced signs of fatty liver disease in mice.
  • These findings are an important clue for developing treatments. 
Illustration of a liver with old cells filled with fatPeople with nonalcoholic fatty liver disease develop excess fat in the liver, illustrated here, even though they drink little or no alcohol. The arrow points to an old cell filled with fat.Newcastle University
Fatty liver disease is the abnormal accumulation of fat in liver cells. It can result from heavy alcohol use or other sources of liver injury. Fatty liver disease in people who don’t drink alcohol, called nonalcoholic fatty liver disease (NAFLD), is the most common cause of long-term liver disease in the US. The exact reasons are unknown, but NAFLD is more common in people with obesity and diabetes.
The initial stage of fatty liver disease is steatosis, which usually doesn’t cause symptoms but can worsen to life-threatening liver diseases, such as liver cancer. The primary treatment for NAFLD is a healthy diet and physical activity to manage diabetes and reduce body weight. If the disease worsens, a liver transplant may be needed.
As people age, old or damaged cells stop dividing to produce new cells. Over time, these “senescent” cells accumulate in the liver and other tissues. Previous studies have linked such cells to certain age-related diseases.
A team of international researchers led by Dr. Diana Jurk of Newcastle University in the UK explored whether senescent cells play a role in NAFLD. Groups led by Drs. James Kirkland of Mayo Clinic in Rochester and Jan Hoeiimakers of Erasmus Medical Centre in the Netherlands collaborated on the study. The work was supported in part by NIH’s National Institute on Aging (NIA). Results were published in Nature Communications on June 13, 2017.
The researchers found that mice with a restricted diet usually didn’t have fatty livers, whereas mice with an unrestricted diet did. Those fed an unrestricted diet had more molecular markers of senescence in liver cells as they aged. Diet restriction protected mice from these signs of senescence.
Next, using two different methods, the team showed that eliminating senescent cells in middle-aged mice reduced the level of fat in the liver. One involved genetically modified mice that enabled the researchers to selectively eliminate senescent cells. The other used recently discovered drugs, called senolytics, that kill senescent cells. These drugs also reduced the level of fat in the liver in a mouse model of type 2 diabetes and liver steatosis.
The team found that senescent cells were poor at metabolizing fatty acids. This suggests that senescent cells may have faulty mitochondria, the power plants of the cell that normally metabolize fatty acids. The finding could explain why fat collects in these cells.
In liver tissue samples from people with NAFLD, the researchers found that fat accumulation was tied to an increase in senescence markers. Taken together, these results suggest that senescent liver cells may be a factor underlying NAFLD.
“As we age, we accumulate cell damage, and we have shown that these older cells are storing excess fat due to their inefficient mitochondria,” Jurk says. “What is exciting is that we have been able to reverse this damage in mice by removing these older, worn-out cells.”
Researchers continue to explore the idea of ridding the body of senescent cells. However, the approach will require careful study because it could have unexpected side effects.
—Geri Piazza 

Related Links

References: Cellular senescence drives age-dependent hepatic steatosis. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, Grellscheid SN, Hoeijmakers JHJ, Barnhoorn S, Mann DA, Bird TG, Vermeij WP, Kirkland JL, Passos JF, von Zglinicki T, Jurk D. Nat Commun. 2017 Jun 13;8:15691. doi: 10.1038/ncomms15691. PMID: 28608850.
Funding: NIH’s National Institute on Aging (NIA) and National Institute on Alcohol Abuse and Alcoholism (NIAAA); Newcastle University Institute for Ageing, United Kingdom; Newcastle University Faculty of Medical Sciences Fellowship, United Kingdom; the Biotechnology and Biological Sciences Research Council, United Kingdom; Connor Group; Noaber Foundation; Centre for Ageing & Vitality; Wellcome Trust; Newcastle Biomedical Research Centre; European Research Council Advanced Grant DamAge and Proof of Concept Grant Dementia, KWO Dutch Cancer Society; and Royal Academy of Arts and Sciences of the Netherlands.

Yoga eases moderate to severe chronic low back pain | National Institutes of Health (NIH)

Yoga eases moderate to severe chronic low back pain | National Institutes of Health (NIH)

National Institutes of Health (NIH) - Turning Discovery into Health

Yoga eases moderate to severe chronic low back pain

At a Glance

  • Researchers found that yoga was as effective as standard physical therapy for treating moderate to severe chronic low back pain in people in underserved communities.
  • The results suggest yoga may be useful as a treatment option for people with chronic low back pain.
Yoga class at health clubA carefully adapted set of yoga poses, practiced under the guidance of a well-trained instructor, may help reduce chronic low back pain and improve function.Moodboard/Thinkstock
Low back pain can range from a dull, constant ache to a sudden, sharp sensation that leaves you incapacitated. The pain can begin abruptly as a result of an accident or lifting something heavy, or it can develop over time due to age-related changes of the spine. For many people, low back pain persists longer than 3 months (chronic pain). For about 20%, chronic low back pain persists for more than one year.
Recent studies in people with mild to moderate chronic low back pain suggest that a carefully adapted set of yoga postures may help reduce pain and improve the ability to walk and move. Yoga stems from ancient Indian philosophy. As practiced today, it typically combines physical postures, breathing techniques, and meditation or relaxation. Most studies of yoga have been done with people from middle-class, white backgrounds. However, people who are from economically disadvantaged communities are disproportionally affected by chronic low back pain.
To study whether yoga helps alleviate pain and improve movement for people from underserved communities, a team led by Dr. Robert Saper at Boston University School of Medicine and Boston Medical Center studied 320 predominantly low-income, racially diverse adults with moderate to severe chronic low back pain. The researchers carried out a noninferiority trial, which is designed to assess whether a new treatment (yoga) is as effective as a current treatment (physical therapy). The study was funded by NIH’s National Center for Complementary and Integrative Health (NCCIH). Results were published online on June 20, 2017, in the Annals of Internal Medicine.
The participants were randomly divided into three treatment groups. One group received 12 weekly yoga classes designed specifically for people with chronic back pain; one received 15 physical therapy visits over 12 weeks; and one was given an educational book and newsletters about self-care for chronic low back pain. The researchers then continued to track the participants for an additional 40-week maintenance phase. During this phase, people in the yoga and physical therapy groups were randomly assigned to either continue to practice at home or with a professional—at yoga classes or physical therapy sessions.
The researchers found that all three groups reported improvement in physical function and pain reduction. However, people in the yoga and physical therapy treatment groups were significantly more likely than those in the education-only group to stop taking pain relievers after one year. These findings suggest that a structured yoga program may be a reasonable alternative to physical therapy for people with chronic low back pain.
“There are now a number of studies, including ours, that show that yoga is effective for chronic low back pain, but until ours those studies included mostly white and middle-class individuals,” Saper explains. “Chronic low back pain disproportionately impacts those who are economically disadvantaged. Therefore, we feel that it was important to test whether the yoga would be received well by an underserved population as well as being effective.”
—by Tianna Hicklin, Ph.D.

Related Links

References: Yoga, Physical Therapy, or Education for Chronic Low Back Pain. Saper RB, Lemaster C., Delitto A, Sherman KJ, Herman PM, Sadikova E, Stevans J, Keosaian JE, Cerrada CJ, Femia AL, Roseen EJ, Gardiner P, Gergen Barnett K, Faulkner C, and Weinberg J. Ann Intern Med. 2017 Jun 20. doi: 10.7326/P17-9039. [Epub ahead of print]. PMID: 28631006.
Funding: NIH’s National Center for Complementary and Integrative Health (NCCIH).

Genetic alteration in child reveals immune response pathway in common cold | National Institutes of Health (NIH)

Genetic alteration in child reveals immune response pathway in common cold | National Institutes of Health (NIH)

National Institutes of Health (NIH) - Turning Discovery into Health

Genetic alteration in child reveals immune response pathway in common cold

At a Glance

  • Analyzing a rare genetic mutation in a child helped researchers discover how the immune system responds to common cold viruses.
  • Understanding the immune response to cold viruses may lead to better therapies.
Family in bed together with coldsAn unusual case led to new insights into how the human immune system responds to rhinoviruses, the main cause of the common cold. GeorgeRudy/iStock/Thinkstock
The common cold is a regular nuisance for most of us. The average healthy adult has two to three colds per year. Cold viruses usually cause mild symptoms—such as sore throat, runny nose, and cough—and are quickly removed by the immune system. But for some people, particularly children and older adults with underlying health problems, cold viruses can lead to more severe health problems.
Human rhinovirus (HRV) is the main cause of the common cold, making up over half of the cases. Despite the prevalence of colds, the immune response to these viruses isn’t well understood. A better understanding could help researchers develop effective therapies against HRV and other cold viruses.
A case study by researchers at NIH’s National Institute of Allergy and Infectious Diseases (NIAID) revealed an important mechanism by which the immune system responds to HRV. The case involved a child who, several weeks after birth, started getting life-threatening respiratory infections. Her doctors at National Jewish Health and NIH suspected she might have a genetic abnormality affecting her immune system. Led by NIAID’s Dr. Helen Su, they performed a genetic analysis on the child and her immediate family. The study appeared online on June 12, 2017, in the Journal of Experimental Medicine.
The analysis identified a rare mutation in the IFIH1 gene, which codes for a protein called MDA5. Animal studies had found that MDA5 plays an important role in detecting viruses and initiating an immune response. The researchers showed that the child’s mutant MDA5 didn’t recognize HRV, and cells from her nasal passages weren’t able to suppress the virus.
The team confirmed that human MDA5 normally recognizes HRV. However, the protein isn’t needed to recognize and control infections by another common cold virus, respiratory syncytial virus (RSV), or flu virus. The researchers speculate that lung damage, a weakened immune system due to HRV infections, or other unknown factors may have contributed to the child’s increased infections with these other viruses.
To explore whether other people might be affected by similar mutations, the researchers analyzed a database of over 60,000 volunteers’ genomes. They found multiple rare variations in IFIH1 that could lead to less effective MDA5. Interestingly, most people with these variations lived a normal lifespan and had healthy children. Other genetic factors may have compensated for the abnormality, or people with frequent HRV infections may not have reported them. 
With intensive care, the child survived numerous bouts of illness. Her health improved as her immune system matured and formed protective antibodies against various infectious agents.
This study has led to a better understanding of the human response to the common cold. Using this information, researchers hope to find a more direct way to fight HRV infections. “When people have other disease factors, HRV infection can become a tipping point and lead to severe illness, disability, or even death,” Su says. “Now that we better understand the pathway, we can investigate more targeted ways to intervene.”
“The human immune response to common cold viruses is poorly understood,” says NIAID Director Dr. Anthony S. Fauci. “By investigating this unique case, our researchers not only helped this child but also helped answer some important scientific questions about these ubiquitous infections that affect nearly everyone.”

Related Links

References: Recurrent rhinovirus infections in a child with inherited MDA5 deficiency. Lamborn IT, Jing H, Zhang Y, Drutman SB, Abbott JK, Munir S, Bade S, Murdock HM, Santos CP, Brock LG, Masutani E, Fordjour EY, McElwee JJ, Hughes JD, Nichols DP, Belkadi A, Oler AJ, Happel CS, Matthews HF, Abel L, Collins PL, Subbarao K, Gelfand EW, Ciancanelli MJ, Casanova JL, Su HC. J Exp Med. 2017 Jun 12. pii: jem.20161759. doi: 10.1084/jem.20161759. [Epub ahead of print]. PMID: 28606988.
Funding: NIH’s National Institute of Allergy and Infectious Diseases (NIAID), National Center for Research Resources (NCRR), and National Center for Advancing Translational Sciences (NCATS); St. Giles Foundation; Rockefeller University; and National Jewish Health.

NIH names winners of “Follow that Cell” Phase 2 competition | National Institutes of Health (NIH)

NIH names winners of “Follow that Cell” Phase 2 competition | National Institutes of Health (NIH)

National Institutes of Health (NIH) - Turning Discovery into Health

Institute/Center

Contact

NIMH Communications
301-443-4536
NIBIB Communications
301-496-3500
NIH Common Fund Communications
301-451-6869


NIH names winners of “Follow that Cell” Phase 2 competition

The National Institutes of Health has named two biological engineering researchers as winners in Phase 2 of its Follow that Cell Challenge. The winners will share $400,000 in prizes awarded for development of new tools and methods for predicting the behavior and function of a single cell in complex tissue over time – and how that reflects the health of the tissue. They were chosen from among several Phase 1 finalists.
Nader Pourmand, Ph.D.(link is external), University of California Santa Cruz, is the first place winner with a prize of $300,000. A team led by Paul Blainey, Ph.D.(link is external), of the Broad Institute, Cambridge, Massachusetts, will share the second place prize of $100,000.
Pourmand developed an advanced “nanopipette” technology with such a fine tip that it makes it possible to non-invasively sample tiny amounts of intracellular material to measure biochemical changes, multiple times in the same cell – without disturbing its function. Coupled with parallel development of “nanogenomics” technology, this will enable scientists to track molecular changes in cells that develop in response to treatments, such as the development of drug resistance in cancer.
“This is the only technology I know of that enables us to repeatedly interrogate a single cell without killing it,” said Pourmand. 
Blainey’s team designed a new molecular technology to streamline cellular analysis and allow for wide adoption by labs. Instead of requiring complex physical sampling of cellular components, it takes advantage of cell secretion pathways to access molecules of interest inside the cell -- at multiple time points. Blainey’s findings demonstrated the ability of a cell to “self-report” gene expression.
Both prize winners will be recognized – and give short presentations on their solutions – as part of the 5th Annual Single Cell Analysis Investigators Meeting, on June 29-30, 2017 at Masur Auditorium on the NIH Campus in Bethesda, Maryland.
Launched in August of 2014, Follow that Cell seeks to incentivize innovation by awarding prizes based on completed work, in contrast to NIH’s traditional, prospective grant and contract mechanisms, which provide funding in advance.
The challenge is aimed at finding new ways to learn how cells transition from a healthy to a diseased state, become responsive to treatment, and offer opportunities for early detection and precision medicine. Under the auspices of the America COMPETES(link is external) Act, it targeted a broader range of innovators than typically seek NIH funding. For example, its promotion included a video(link is external) by then NIMH director Thomas Insel, M.D.
“By using the prize mechanism, the NIH pays only for projects that achieve the program’s objectives. It de-risks an inherently risky goal,” said James M. Anderson, M.D., Ph.D., director of NIH’s Division of Program Coordination, Planning and Strategic Initiatives (DPCPSI), which harbors the NIH Common Fund, whose Single Cell Analysis Program sponsored the challenge, with additional leadership provided by the National Institute of Mental Health (NIMH) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB).
In March of 2015, NIH announced selection of 16 finalists from Phase 1 of the competition, which sought proposed theoretical solutions rather than hands-on experimentation. The submissions were reviewed by NIH scientific experts and, ultimately, by a three-judge panel composed of the directors of the sponsoring NIH components. Five of the Phase 1 finalists, including Pourmand and Blainey, were selected to share prizes totaling $88,000.
All of the Phase 1 finalists were eligible to participate in Phase 2, during which they were encouraged to execute their ideas in proof-of-concept studies. These were similarly reviewed in choosing the Phase 2 prize winners.
“The prize winners have brought some creative ideas to the study of single cells,” said NIBIB director Roderic Pettigrew, Ph.D., M.D. “We challenged competitors to develop new ways to monitor biochemical changes in individual living cells and they have demonstrated an impressive capacity for problem solving and innovation.”
“The winning solutions can have an immediate impact in research labs and will very likely lead to further innovations by these groups and others,” added NIMH director Joshua Gordon, M.D., Ph.D. “Running a prize challenge is relatively new for NIH and we are happy with the outcome. Kudos to all the solvers who participated and special congratulations to the winners.”
The winners’ own brief descriptions of their prize-winning solutions follow:
FIRST PLACE PRIZE WINNER - Molecular Exam of Single Living Cells
Nader Pourmand, Ph.D., University of California Santa Cruz, Santa Cruz, California
"We have developed a novel nanopipette technology that can be used to monitor the molecular properties of single cells over time. Initially, we developed the technology to monitor changes in gene expression (genomics) in single cells. Now, in addition to single-cell sequencing technology, we have integrated methods to monitor temporal changes in the phosphorylation and activation of transcription factors. This allows us to monitor the activation of different transcription factors and the array of genes each one regulates to investigate how different signaling pathways interact in controlling gene expression in a single cell. We have also integrated methods to monitor a cell's metabolic state over time by measuring intracellular pH and glucose. Thus, we can simultaneously monitor genomics, phosphoproteomics, and metabolomics in single cells. To establish the utility of this multiplexed technology, we are employing it to study a critical biological question: How do cancer cells develop drug resistance? While the proposed studies focus on the use of our nanopipette technology to study human cancer cells in culture, the cell monitoring capabilities of the nanopipette allow it to be used for in situ analysis of single cells in tissue biopsies and slices. This technology is also adaptable to instrumentation commonly used for electrophysiological measurements of single cells."
SECOND PLACE PRIZE WINNER - Single-cell self-reporting for live-cell transcriptomics

Paul Blainey, Ph.D. (team lead), Ankur Kulshreshtha, Ph.D., Jacob Borrajo, Mohamad Najia, MIT and Broad Institute, Cambridge, Massachusetts
"Mammalian cell biology is dynamic, but today’s ‘omic approaches require destruction of cells to access their molecular contents and cannot resolve the full richness of cellular diversity in situ. The research community needs tools that can probe living cells in real tissues to produce high dimensional time-series data from cells of interest. Our technique entails export of cellular analytes via an engineered secretion pathway. We show that cells can self-report their internal transcriptional state in a quantitatively interpretable manner. We are working to render our approach a practically useful method for analyzing clinically relevant biological systems."
About the National Institute of Mental Health (NIMH): The mission of the NIMH is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure. For more information, visit https://www.nimh.nih.gov.
The NIH Common Fund encourages collaboration and supports a series of exceptionally high-impact, trans-NIH programs. Common Fund programs are designed to pursue major opportunities and gaps in biomedical research that no single NIH Institute could tackle alone, but that the agency as a whole can address to make the biggest impact possible on the progress of medical research. Additional information about the NIH Common Fund can be found at https://commonfund.nih.gov.
NIBIB’s mission is to improve health by leading the development and accelerating the application of biomedical technologies. The Institute is committed to integrating the physical and engineering sciences with the life sciences to advance basic research and medical care. NIBIB supports emerging technology research and development within its internal laboratories and through grants, collaborations, and training. More information is available at the NIBIB website: https://www.nibib.nih.gov.
About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.
NIH…Turning Discovery Into Health®

Huntington’s Disease: Gene Editing Shows Promise in Mouse Studies | NIH Director's Blog

Huntington’s Disease: Gene Editing Shows Promise in Mouse Studies | NIH Director's Blog



Huntington’s Disease: Gene Editing Shows Promise in Mouse Studies

Cas9 clipping the Huntington's repeatsMy father was a folk song collector, and I grew up listening to the music of Woody Guthrie. On July 14th, folk music enthusiasts will be celebrating the 105th anniversary of Guthrie’s birth in his hometown of Okemah, OK. Besides being renowned for writing “This Land is Your Land” and other folk classics, Guthrie has another more tragic claim to fame: he provided the world with a glimpse at the devastation caused by a rare, inherited neurological disorder called Huntington’s disease.
When Guthrie died from complications of Huntington’s a half-century ago, the disease was untreatable. Sadly, it still is. But years of basic science advances, combined with the promise of innovative gene editing systems such as CRISPR/Cas9, are providing renewed hope that we will someday be able to treat or even cure Huntington’s disease, along with many other inherited disorders.
My own lab was part of a collaboration of seven groups that identified the Huntington’s disease gene back in 1993. Huntington’s disease occurs when a person inherits from one parent a mutant copy of the huntingtin (HTT) gene that contains extra repetitions, or a “stutter,” of three letters (CAG) in DNA’s four-letter code. This stutter leads to production of a misfolded protein that is toxic to the brain’s neurons, triggering a degenerative process that, over time, leads to mood swings, slurred speech, uncontrolled movements, and, eventually, death. In a new study involving a mouse model of Huntington’s disease, researchers were able to stop the production of the abnormal protein by using CRISPR tools to cut the stutter out of the mutant gene.
The progress, reported in the Journal of Clinical Investigation [1], comes from the NIH-supported team of Su Yang, Renbao Chang, Xiao-Jiang Li, and colleagues at Emory University School of Medicine, Atlanta. The group’s previous work showed that halting the production of mutated (or even healthy!) HTT protein in mature neurons doesn’t hurt the cells or cause obvious neurological problems in mice [2]. So, the researchers now wanted to see if halting HTT production in millions of neurons in the striatum, which is a part of the inner brain that controls motor skills, could reverse early signs of disease that typically appear in affected mice before the age of 9 months.
To get their answers, the researchers injected millions of inactivated viral particles directly into the striatum of a few 9-month-old mice, engineered to produce the mutant form of HTT protein. Each particle, like a Trojan horse, delivered to the neurons one of the two pieces of the CRISPR/Cas9 editing system: either a short guide RNA sequence to mark for removal the HTT gene’s CAG repeats or a scissor-like Cas9 enzyme to snip out the repeats. In this strategy, both the health and abnormal copies of the HTT gene were “knocked out,” resulting in the production of no HTT protein.
Remarkably, three weeks later, the researchers found that the CRISPR/Cas9 gene editing had reversed the disease process in their mouse model. Neurons in the striatum had stopped making the HTT protein. What’s more, the toxic, abnormal HTT protein that had already clumped together in and around the neurons—and which likely would have would have killed them—had begun to clear to varying degrees in the mice. The same went for other protein abnormalities associated with the progression of Huntington’s disease.
There was even better news to come. The Emory team repeated the CRISPR/Cas9 injections into the striatum of a dozen 9-month-old mice and got a similar protein-clearing outcome. Then, over the next three months, the researchers found that the animals’ balance, muscle coordination, and mobility had improved compared to mice given sham shots of CRISPR/Cas9. Interestingly, the degree of improvement in their motor skills corresponded with the amount of toxic protein that had been cleared from the striatum.
As exciting as gene editing is as a potential treatment for Huntington’s disease, the research is still very much in its early stages. For example, while the Emory researchers were able to establish that adult mice could live well without a functioning copy of HTT, they remain uncertain whether that’s also the case in humans.
Another potential safety concern with CRISPR/Cas9 is off-target editing. Last May, in a very controversial article, it was reported that CRISPR/Cas9 can sometimes go astray and snip away at healthy genes in animal studies, leaving behind hundreds of unintended mutations in its wake [3]. However, the Emory team reported that off-target editing did not appear to be a major problem in its latest study. Sequencing of genomic DNA taken from the striatum of the mice showed that CRISPR/Cas9 editing occurred “predominantly” around their target sequences without significant genomic editing in the most likely off-target locations. While this is only one study, it’s reassuring news as more animal studies testing the potential curative power of CRISPR/Cas9 editing move forward.
This utilization of CRISPR/Cas9 to pursue a cure for Huntington’s disease is one more example of how this powerful new technology might be applied to the thousands of diseases due to a specific mutation in DNA; efforts are already underway for other conditions like sickle cell disease and muscular dystrophy. Given the promise, the NIH Common Fund is actively exploring ways in which this approach could be accelerated.
References:
[1] CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease. Yang S, Chang R, Yang H, Zhao T, Hong Y, Kong HE, Sun X, Qin Z, Jin P, Li S, Li XJ. J Clin Invest. 2017 Jun 19. [Epub ahead of print]
[2] Ablation of huntingtin in adult neurons is nondeleterious but its depletion in young mice causes acute pancreatitis. Wang G, Liu X, Gaertig MA, Li S, Li XJ. Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3359-3364.
[3] Unexpected mutations after CRISPR-Cas9 editing in vivo. Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Nat Methods. 2017 May 30;14(6):547-548.
Links:
Huntington’s Disease Information Page (National Institute of Neurological Disorders and Stroke/NIH)
Li Laboratory (Emory University, Atlanta)
NIH Support: National Institute of Neurological Disorders and Stroke